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Abstract. A sequential Bayesian method for finding the maximum of a function based on myopically 
minimizing the expected dispersion of conditional probabilities is described. It is shown by example 
that an algorithm that generates a dense set of observations need not converge to the correct answer 
for some priors on continuous functions on the unit interval. For the Brownian motion prior the 
myopic algorithm is consistent; for any continuous function, the conditional probabilities converge 
weakly to a point mass at the true maximum. 
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Suppose we wish to locate the maximum of a real-valued function defined on a set 

by observing the value of the function at sequentially selected observation points. 
Assume  that  we have some prior knowledge about  the relative likelihood of 
various functions, and that we can formalize this knowledge in the form of a 

probabil i ty distribution on the functions (i.e.,  view the function as a sample path 
of a stochastic process). As we sequentially observe the value of the function at 
various sites we can update  the prior probabili ty distribution. As the number  of 

observat ions increases, one might hope that the conditional probabil i ty dis- 
tr ibution for the maximum would become concentrated around the true maxi- 

mum.  In this paper  we consider myopic algorithms that at each stage choose the 
next observat ion to minimize the expected variance of the posterior distribution 
of the maximum.  Our  pr imary purpose is to address the question of consistency of 
the myopic  algorithm. 

Optimizat ion algorithms based on Bayesian methods and applications are 
surveyed in Mockus (1989), T6rn and Zilinskas (1989), and Betr6 (1991). 

The  next section introduces the problem and the notation. In Section 2 we 
describe the myopic optimization algorithm. The convergence propert ies  of the 
myopic  algorithm are investigated in Section 3, and Section 4 gives a worst-case 
analysis of the algorithm for Brownian motion. 

1. Notation 

Given a real-valued function f defined on the unit interval [0, 1], let f *  denote  the 
global max imum of the function. We consider the problem of locating f*  by 
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sequential observation; that is, we choose 

t l ,  t 2 ( f ( t l ) ) ,  t 3 ( f ( t l ) ,  f ( t z ) ) , .  . . , 

where t n E [0, 1] is the nth site at which we choose to observe the value f(tn). 
Suppose we are given a probability on functions defined on the unit interval 

(i .e.,  we view {f( t )  : t E [0, 1]} as a stochastic process). By an algorithm we mean 
a rule for determining the sequence {tk). An algorithm can also be thought of as 
inducing a sequence of probability measures {P,},  where 

P~(A)  = P { f *  E A [observations up to time n} . 

We take the performance criterion of algorithms to be the minimization of the 
variance of the { P,  }. 

Consider a probability space (12 = C([0, 1]), o~,/z), where C([0, 1]) is the set of 
continuous real-valued functions defined on the unit interval and ~ is the Borel 
o--field of C([0, 1]) with the uniform topology (Billingsley, 1968). Unless other- 
wise noted, expectations will always be with respect to /x .  For o) ~ f~ set 

and 

f ( t )  = f ( t ;  , o ( t )  , 

f*  = f*(w)  = sup{f(t)  : t E  [0, 11}. 

An algorithm is a rule for choosing the next site at which to observe the 
function based on past observations. Consider maps of the form 

A:  Ft--~ [0, 1] ~~ , 

where we write 

A ( w )  = ( i i ( f )  , t2( f ) ,  t 3 ( f ) , . . . ) .  

Let  

~n = o'(tk,  f(tk); k = 1, 2 . . . .  , n} 

for n -- 1, 2 . . . . .  be the ~r-field generated by the observations up to time n, and 

We can think of  o~. as representing the information available after n observations. 
We consider as algorithms the subset of maps A that satisfy the requirement 

that 

t n E ~ n _ l ,  n = 1 , 2 , . . . ,  

where ~0 = {ti, 1)} is the trivial o--field. In words, the nth site at which to observe 
is a function of the first ( n -  1) observations; i.e., the algorithm is deterministic 
and uses only the information that has been acquired by time n. 

Let  P,  be a regular conditional probability distribution of f*  given ~ ,  (for 
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existence, see Breiman (1968)); 

P.(B)  =/*{w:  f*(tn) @ B I ~ ,}  

for Borel sets B. Note that P~ is a random measure. 
Let 

M, = max{f (q ) ,  f(t2) . . . . .  f( t , )}  

be the maximum value observed by time n. 
We will be mainly interested in the Brownian motion prior on C([0, 1]). The 

following formula (from Shepp (1979)) for the conditional distribution of the 
maximum of a Brownian motion given its value at two endpoints will be used in 
the following sections: 

/z(sup w ( s ) > y [ o ~ ( 0 ) = 0 , 0 0 ( t ) = x )  e x p ( 2 y ( y - / ) )  = - . (1) O<~s<_t 

2. Myopic Algorithms 

Let 

Vn - -Var(f*  [ ~ . )  -- E((f*)2 [ ~n) - E e ( f * l ~ n ) .  

T H E O R E M  1. For any algorithm, {(Vn, ~n) : n = 0, 1, 2 , . . . }  is a positive super- 
martingale. 

Proof. We need to show that 

E(Vn+l I ~en) ~ Vn. 

Jensen's inequality implies that 

E(E2(f*[ ~.+1) [ ~ . )  ~> E2(f*  [ ~ (2) 

and since fin C o~n+l, 

E(E( ( f* )Z l~ .+ l ) l~n )  = E((f*)2 [ ~n) �9 (3) 

Using these facts 

Vo - E(Vo< I~n) 

= E((f*)21 ~ , )  - g Z ( f . l ~ n )  - E(g(( f*)2l ,%+x)l ,%) 

+ E(E2( f* l  ~.+~) [ ~ . )  

= E ( E 2 ( f * l ~ o + l ) l ~ . )  - E2(f*  [ ~ . ) ~ > 0 ,  

where the second equality follows from (3) and the final inequality is a result of 
(2). �9 
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If Var(f*  [ f( t))  : E ( f *  - E(f* l f(t))Z l f(t)), then 

Var(f*) : E(Var( f* ] f(t))) + Var(E( f* l f(t))) . (4) 

Therefore the expected gain (the current variance minus the expected posterior 
variance) from making an observation at t is Var(E(f*] f(t))).  

COROLLARY 2. There is a random variable V such that 

vn~va.s.  (~). 

Proof. This follows from the supermartingale convergence theorem (Theorem 
II-2-9, Neveu, 1975), since {(Vn, ~n): n =0,  1 ,2 , . . . }  is a positive supermar- 
tingale. �9 

We are now in a position to pose the one stage (myopic) optimization problem: 
choose t to 

minimize E(Var( f*  l f( t))  ) , (5) 

or, equivalently, 

maximize Var (E( f*[ f ( t ) ) ) ,  (6) 

where the expectations are with respect to the current probability distribution. 
Clearly the expected decrease in variance given by (6) is non-negative. Further- 
more, if f* is positive and f* ~ ~= then with probability one, 

E(f* [ o~n)~ E(f* I ~ )  --f* 
outside {E(f* I ~ = ~ for all n} (Corollary II-2-9 of Neveu, 1975), in which 
case V n ~ 0 with probability one. Therefore, if the prior is supported by C([0, 1]) 
and the algorithm generates a dense set of observations for any sample path, the 
Bayesian optimizer will convince himself that he has found the maximum. In the 
next section we consider the question of whether he is necessarily correct or if it is 
possible that he is convinced of the wrong answer. 

3. Consistency of Myopic Algorithms 

The following theorem shows that under the myopic algorithm for Brownian 
motion, the set of observation sites becomes dense. 

T H E O R E M  3. Let f be a continuous real-valued function on [0, 1]. I f  t ~ is 
Brownian motion, then the set of  observation sites {t 1 , t ~ , . . . }  generated by the 
myopic algorithm applied to f is dense in [0, 1]. 

Proof. Let ~ and P~ be regular conditional probability distributions given ~n 
(since C[0, 1] is a complete separable metric space, the existence of regular 
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conditional probabilities is guaranteed (Breiman, 1968)). Note that the/xs and Ps 
are not random measures, since f is fixed and algorithms are deterministic. 

Let  0 ~< s 1 < s 2 ~< 1 and set t = (s I + s2)/2. We will show a contradiction results 
if we assume that no observation will ever be made in the interval (sl, s2). 

First we show that the expected gain from observing at t is bounded below by a 
positive number.  If we observe at t, then for A > 0  we have by Chebyshev's 
inequality (all expectations are with respect to the current probability distribution) 
that 

Va r ( E ( f *  [ f(t))) >~ A2P(IE( f*  I f(t)) - E(f*)] >1 A) 

A 2 p ( E ( f  * ] f(t)) - E ( f * )  >! A) ~ A2P(f( t )  - E ( f * )  >! A ) .  

The last inequality follows from the fact that E( f*] f ( t ) )>~f ( t ) .  Now since f i s a  
continuous function on a compact set, 

f yPs <~ B sup 

for some constant B. Therefore ,  

V a r ( E ( f *  I f(t))) >~ A 2 e ( f ( t )  - B >1 A )  >0, 

since f ( t )  is normally distributed with variance bounded below by (s 2 - s ~ ) / 4  and 
mean bounded below. Then for any n, 

E ( g o )  - E ( g n )  = E ( ( V  0 - g i )  q- ( g  1 - g2)  q - - . .  ~- ( g n _  1 --  g n )  ) 

>! a2p(w(t)  - B >1 A)---> o~, 

contradicting the boundedness of E(V  n). Therefore,  any subinterval will eventual- 
ly have a new observation placed in it, and the result follows. �9 

We now turn to the question of consistency of algorithms. Suppose we have a 
prior on continuous functions and a set of observations that becomes dense in the 
domain. Does that imply that the conditional distribution of the maximum 
converges weakly to a point mass at the true maximum? That  is, if a Bayesian 
analyst succeeds in convincing himself that he has found the answer, is he 
necessarily correct? The following example (derived from Example 4 in Diaconis 
and Freedman (1983)), shows that the answer is in general negative even for 
functions in the support of the prior. 

E X A M P L E  1. Define sequences of functions gn, hn in C([0, 1]) as shown in 
Figure 1. 

The function gn takes the values 3/4 at 0, 0 at 1/4 and 1-2 -", 2 -n at 1, and 
interpolates linearly in between. The function hn is defined similarly but takes the 
value I at 1. 

Define a prior 7r on C([0, 1]) by putting mass ~3 on gn and ~ on h n , where c is a 
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3/4 3/4 

1/4 1 ~ 2 -~ 1/4 

Fig. 1. 

1 

/ 
1 - 2 -~ 

h~ 

normalizing constant. Let  g~ = l im ,~ ,  g,, (so go~ is in the support of zr, the smallest 
closed set o~ probability one). Note that al~ functions in the support of 7r have a 
unique maximum: 3/4 for the g, ' s  (and g=), and 1 for the h~'s. Suppose we 
observe the values at the grid of mesh 2 - ' ;  at stage n, we observe the value of the 
function at {k-  2 - "  : k = 0, 1 . . . .  ,2" - 1}. ff  the function we are observing is g=, 
then after observing the grid of mesh 2-" we can rule out { gk, hk : k < n}, and by 
choice of  the weights as we make more obser-cations we become more and more 
convinced that the true function is one of the h , ,  and therefore that the maximum 

is 1: 

5 
P.({1})  = Z" ~ ~ 1 

and so the conditional distribution of the maximum converges weakly to a point 
mass at '1, while the true maximum of g= is 3/4. Thus a Bayesian will convince 
himself of the wrong answer. 

It is easy to see that the myopic algorithm would terminate successfully after 
the first observation, so this example does not show that the myopic algorithm is 
not consistent. �9 

Positive results are available for the myopic algorithm corresponding to Brownian 
motiom First we present a technical lemma that will be used in the proof  of the 
subsequent theorem. 

L E M M A  4. For a > 0 ,  consider the optimization 
t l , t  2 , . . . , t  n to 

minimize I~I (1 - exp(-a/ tk)  ) 
k = l  

subject to 

~, t k = l  and O<~tk~A, k = l , . . . , n .  
k = l  

problem: choose n and 
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(Take e (-a/~ = 0). For A sufficiently small, a solution is 

n * - I  

* n* * 1 ~] * t k = A , k = l , 2 , . . . ,  - 1 ; t n .  - t k ,  
k = l  

where n* = [A -1] is the smallest integer greater than or equal to A -1. 

Proof. Suppose  that  there  is a solution t l , . . . ,  t n with two componen t s  positive 

and less than  A; say 0 < t~ < A and 0 < t 2 < A. We will show that  replacing t l ,  t z 
r r I t 

with t a = A, t 2 = t~ + t 2 - -  A ( o r  t~ = t~ + t 2 ,  t 2 = 0 if t a + t 2 < A )  gives a strictly 
smaller  value to the funct ion to be minimized.  Consider  the funct ion 

q ~ ( t ) = ( 1 - e  ~ ) ( 1 - e  ,1+f2-,), 0~<t~<t  1 + t 2 ,  

which,  for  t I + t 2 sufficiently small (t I + t 2 ~< a/2 suffices) is concave ,  achieves its 

m a x i m u m  at i = (t a + t2)/2,  and is symmetr ic  about  k Since we want  to minimize,  

we  are  best  off  choosing t'~ = A and t~ = t~ + t 2 - -  A ,  which establishes the l emma  

for  the case t~ + t 2 > A. If  t I + t 2 < A  the objective funct ion is minimized by 

combin ing  the two intervals (t~ = t I + t2, t 2 = 0), since ~0(t) is minimized at t = 0. 

We  are now ready  for  the main  result on  consistency. 

T H E O R E M  5. I f  the prior on C([0, 1]) is Brownian motion and f C C([0, 1]) with 
f(O) = O, then P~ ~ 6 I .  , where ~ denotes weak convergence of probability mea- 
sures and 6 x is the distribution degenerate at x. 

N o t e  that ,  as in T h e o r e m  3, the P~ are not  r a n d o m  measures  since f is fixed and 
a lgor i thms are deterministic.  

Proof. Since f is cont inuous  and the observat ions  become  dense  by T h e o r e m  3, 

we have M n 1' f *  as n---> w. We will show that  for  any e > 0, 

P f ( f * > M ,  + e)--+O. 

By renumber ing  if necessary,  we can assume that  the n observat ion  sites are 

0 = t o < t  1 < t 2 < . . .  < t n ~<1 . 

T h e n  

s . leI P n ( f  >Mn + e ) = l -  P ~ ( f * < ~ M , + e ) ,  
k = l  

where  f ~  is the s u p r e m u m  over  [tk_ 1, tk]. Let  Y(t) be the m a x i m u m  of  a 
Brownian  bridge of  length t (a Brownian  mot ion  condi t ioned to be 0 at t, see 
Shepp  (1979)),  so that  

P(Y( t )  > e) = e x p ( - 2 e z / t ) ,  
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where  we have used (1). Let  A k = t ~ -  tk_l, and A = m a x A  k. Then  

f �9 P . ( f  k <~ M.  + e) >I P(Y(Ak) ~< e ) ,  

and therefore  

f ~ [~[ Y * P n ( f  ' > M~ + e ) =  l - - -  P . ( f  g <- M n + e) 
k = l  

<~1-  [[  P(~"(Ak)<-e)= 1 -  l~I [ 1 -  exp(--2e2/Ak)] 
k - 1  k - 1  

< 1 - (1 - exp( -2e2 /A))  [1/~1 +I 

where  the last inequali ty follows f rom L e m m a  4. Since A---> 0 (as the observat ions  

b e c o m e  dense),  A will eventually be small enough  for  the L e m m a  to apply. As  the 

d iamete r  o f  the part i t ion A---~ 0, the last expression converges  to 0. 

N o w  we have that  M,  is non-decreasing,  converges  to f * ,  P~ is suppor ted  on 

[ m , ,  ~) and P~((M, + e, ~))---> 0 as n---> ~ for any e > 0 ,  and so we can conclude  
that  

P n ~ 6 f . ,  

as was to be shown. �9 

The  p roo f  of  consistency uses the formula  (1) for the distribution of  the max imum 

of  a t ied-down Brownian  mot ion.  Extending the result to the mult ivariate  case 

would  seem to require  a similar formula  for  the max imum of  a t ied-down r a n d o m  

field. 

Finally,  we give an example  to show that  the myopic  algori thm need  no t  be 

optimal .  

E X A M P L E  2. For  this example we will take the domain  to be the discrete set 

{0, 1, 2, 3, 4} and take the prior to a simple r andom walk condi t ioned to take  the 

value 0 at 4. 

Le t  Z 1 , Z2,  Z3, Z 4 be independent ,  identically distr ibuted r a n d o m  variables 

with 

1 
P ( Z  i = 1) = ~ = P(Z,  = - 1 ) .  

Le t  S o = 0 and for 1 ~< n ~<4 set S,  = Z 1 + . - .  + Z n. Define a stochastic process 

{Xn : 0 ~< n ~< 4} with distribution 

P ( X , I = k l  . . . . .  X , , = k i ) =  P ( S , ~ = k l , . , . , S , , = k j l S 4 = O ) ,  O<~n<~4. 

The  myopic  algori thm for locating Y = max X~ chooses  t o = 2, and then if 
X 2 = 0, tl = 1 (t~ = 3 gives the same value). U n d e r  the myopic  algori thm, E(V1) = 

and E(V2)= 
N o w  consider  an alternative algorithm. Take  t o = 1  and t I = 2 if X 1 = 1 and 
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t I = 3 if X 1 --- - 1 .  U n d e r  this a lgor i thm,  E(V1) = ~ andE(V2)  = 0. This  a lgor i thm is 
two-s tep  op t ima l  and is distinct f rom the myop ic  (one-s tep  op t ima l )  a lgor i thm.  

4. Worst Case Bound 

F r o m  L e m m a  4 we can see tha t  the var iance  converges  to zero mos t  slowly for  the  
funct ion  that  is identically zero.  In  this sect ion we obta in  a bound  on the ra te  of  
conve rgence .  

We  t ake  the funct ion f(x) -= 0, 0 ~< x ~< 1 and the pr ior  to be  Brownian  br idge.  

T h e  myop ic  a lgor i thm then  produces  a un i fo rm grid of  observa t ions .  Tha t  is, af ter  
2 n - 1 obse rva t ions  the sites are  k .  2 n for  k = 1, 2 . . . .  ,2  n - 1. For  n = 2 ~ - 1 for  

s o m e  k, 

P , ( f *  ~< y) = [ P ( Y ( 1 / n )  <~ y)]"  = [1 - e x p ( - Z n y 2 ) ] "  . (7) 

F r o m  this we  can der ive  a lower  bound  on the  p e r f o r m a n c e  of  the myop ic  
a lgor i thm.  

T H E O R E M  6. Let Y, be a random variable with distribution P,; i.e., Yn 
represents the maximum random variable after n observations when the observed 
function is f=-O. Then 

~/8n l o g ( n ) ( Y .  - l f l -og(n) ]  y , ,  
2n / ~  

where 

P(Y* ~< y) = e x p ( - e x p ( - y ) ) .  

Proof. Using  E q u a t i o n  7, 

Y + 

~/8n log(n)  

[ ( ( Y2 + log(n) + 2yl l- 
= 1 - e x p  - 2 n  8 n l o g ( n )  2n 4 n / / J  

y2  : +,og n  § 

- - ~ e x p ( - e x p ( - y )  

a s  n --> ~ .  �9 

5. Conclusions 

W e  have  f o r m u l a t e d  and analyzed a myop ic  a lgor i thm for  finding the m a x i m u m  of  
an u n k n o w n  funct ion based  on squared  e r ro r  loss. O u r  p r ima ry  concern  has been  
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the consistency of the algorithm. If  the optimizer assumes a prior probabili ty on 

continuous functions on the unit interval and follows the myopic algorithm for 
that prior,  will he become more  and more  confident that he has found maximum? 
A n d  if he does become convinced, is he necessarily right? 

The  answer to the first question is affirmative under  fairly general conditions. I f  
the prior  is Brownian motion,  then the answer to the second question is also 

affirmative. There  exist priors for which an algorithm that generates a dense set of 
observations need not converge to the right answer. However ,  it is unknown if 
there are priors for which the myopic algorithm is inconsistent. 
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